

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 12 Number 10 (2023) Journal homepage: <u>http://www.ijcmas.com</u>



## **Original Research Article**

https://doi.org/10.20546/ijcmas.2023.1210.001

Assessment of Variability Induced by Gamma Rays in M2 Generation Mutants of three Genotypes of Okra (*Abelmoschus esculentus* (L.) Moench) in Burkina Faso

Alphonse Yakoro<sup>1\*</sup>, Mahamadi H. Ouédraogo<sup>1</sup>, Windpouiré V. Tarpaga<sup>2</sup>, Kiswendsida R. Nanema<sup>1</sup>, Karidiatou Traoré<sup>3</sup> and Mahamadou Sawadogo<sup>1</sup>

 <sup>1</sup>Équipe Génétique et Amélioration des Plantes/ Laboratoire Biosciences, École Doctorale Sciences et Technologies, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
<sup>2</sup>Institut de l'environnement et de Recherches Agricoles (INERA), Centre national de spécialisation en fruits et légumes (CNSL-FL), Farako-Bâ, 01 BP 910, Bobo-Dioulasso, Burkina Faso
<sup>3</sup>Institut de l'environnement et de Recherches Agricoles (INERA), CNRST, Ouagadougou, Burkina Faso

\*Corresponding author

## A B S T R A C T

#### Keywords

Okra, mutants, quantitative traits, M2, yield, *Abelmoschus esculentus* (L.) Moench

#### Article Info

Received: 19 August 2023 Accepted: 30 September 2023 Available Online: 10 October 2023 In Burkina Faso, M2 mutants and their three Okra (*Abelmoschus esculentus* (L.) Moench) control genotypes seeds irradiated with gamma rays, were grown and care taken in pots. Twenty-six quantitative traits were evaluated and all the M2 genotypes revealed some significant differences compared to the control. No stem branching and multiple fruits at a same node were recorded in M2 and control lines, as previously in M1. However, three interesting lines, L32, L33 and L55, were identified from UAE22, having reduced plant height and higher or same fruits traits than control. In KbG535, one M2 line, L48, showed an increased plant height associated with higher stem diameter, fruit length, weight and number of seeds. One more line, L61, had reduced height without difference from control for yield traits. For KBG24, line L34 showed a reduction of first fruit node height and an increase in fruit weight and seed number per fruit; while line L43 had a high fruit length associated with decrease in first fruit node height. All these lines came from irradiation with doses ranged from 200 to 600Gy, confirming that this interval of doses was more suitable for mutation inducing in okra.

### Introduction

Okra (*Abelmoschus esculentus* (L.) Moench) is an economically important common vegetable crop cultivated throughout the tropical and warm

temperate regions of the world (Surendran and Udayan, 2017). Its fruits and leaves have low amount of calories, are rich in calcium, phosphorus, ascorbic acid and contain proteins, fats, carbohydrates, fibres, iron, b-carotenes, thiamine, riboflavin, niacin (Tindall, 1983). The World data atlas 2020, states that okra production in the world in 2020 was 10,548,942 tons, from which Burkina Faso contributed with 22,543 tons, being the 11<sup>th</sup> best producer among African countries.

Okra genetic diversity still worth an improvement, since some consumer needs related to yield and nutritional properties are not satisfied. The nature and extent of genetic variability available within the species form the basis for an effective selection for agro-economic traits under improvement (Amin *et al.*, 2019).

Morphological mutations, having desirable traits, play a key role in plant breeding. The development of new varieties and making of ideotype are the result of modifications of plant parts during morphological mutations (Khursheed *et al.*, 2019).

Induced mutation is highly effective in enhancing natural genetic resources and has been used in developing improved cultivars of cereals, fruits and other crops (Lee *et al.*, 2002).

Among the mutant varieties in the FAO/IAEA 2022 database, 2001 concerned 6 species viz. Rice, Barley, Chrysanthemum, Wheat, Soybean and Maize. No okra mutant was registered yet (MVD iaea.org).

Nevertheless, there are few reports in okra where mutants have been isolated through mutation breeding. The examples of such mutant varieties are Punjab-8, Pusa Swani, and Parbhani Tillu (Ashwini and Rajaram, 2019).

In order to enhance variability and allow selection, experimentations using gamma rays irradiation have been performed on some genotypes in Burkina Faso. The gamma radiation revealed to have significant effect on agromorphological traits of okra M1 generation (Yakoro *et al.*, 2022 and 2023). Since most mutations are recessive in nature and are not expressed in the first generation. M1 generation may show variation in the growth of individual plants due to physiological effects, with the plants showing lethality at various stages of growth and development. (Suprasanna *et al.*, 2015; Kalpande, *et al.*, 2020))

The aim of the present study is to evaluate the effect of gamma ray on inducing M2 interesting mutants which could be selected and used in a breeding program. M2 generations may express heritable traits and allow further selection.

# Materials and Methods

## Plant material

It was made with the M1 seeds of 3 genotypes (UAE22, KBG535 et KBG24) previously irradiated with gamma radiation in 2020 in Burkina Faso. The list of M1 seeds constituting the M2 generation lines is in table I below. Every line comes from a single M1 plant.

## **Experimentation in pots**

Seeds from every M1 plant of the three genotypes and control were sown in plastic pots containing heat sterilized soil, at the "Plant Protection" facilities in Bobo-Dioulasso. The method of M1 plant to row (Sharma, 2014) was used. Each row consisted of plants in at least 4 plastic pots depending on availability of seeds, and in each pot, at most 5 seeds were sown. Plants were then thinned to no more than 2 plants per pot. Water was provided and grass removed on demand. Phytosanitary treatment and NPK fertilizer were also applied.26 quantitative traits (Table II) were measured and data were collected on three plants per row i.e. per line. The plants in M2 generation were thoroughly screened in order to identify mutations affecting any part of the plant.

#### Data analysis

Data analysis, i.e. ANOVA and AHC, was performed by genotype, using XLSTAT2016. Differences comparing means of control with each M2 mutant line of the same genotype were evaluated through DUNETT bilateral test at 95% confidence interval. Dissimilarities between groups were assessed using Euclidian distance and Ward aggregation method. When exploiting matrix of correlation results, traits with high correlation coefficient have been considered redundant when they were a same trait measured at different times. In those cases, only one trait was retained for AHC.

#### **Results and Discussion**

According to the present study, it can be stated that in M2 plants, irradiation has induced changes in quantitative agromorphological characters for all three genotypes (Tables III, IV and V).

For UAE22 genotype, among the twenty-six (26) traits evaluated, significant variation was noticed for plant height, height of first fruit node, stem diameter, internode length, peduncle length, first fruit length, fruit diameters, first fruit weight, weight of seeds per fruit, total fruits weight per plant, number of seeds per fruit, number of seeds per plant, ratio plant height/fruit length.

For KBG535 genotype, the characters which showed significant difference from the control were plant height, height of first fruit node, stem diameter, internode length, first fruit length, fruit diameters, number of internodes, number of ridges per fruit, ratio plant height/fruit length.

For KBG24, height of first fruit node, first fruit weight, number of seeds per fruit, number of ridges per fruit and ratio plant height/fruit length were significantly different from control

Indeed, variation occurred but the number of characters concerned was different from one genotype to another. UAE22 showed the highestradiation induced variation, followed by KBG535 then KBG24. Mainly, in UAE22 some lines made interest by their good characteristics. They are lines with reduced height without reduction of stem vigour, fruit traits and yield characters compared to control or with increase of these

characters. As results of this study, we can identify the following mutant lines as significantly interesting: The traits may have been induced by mutation of the associated genes.

## For UAE22

Line 32 (400Gy) had a small height, a short peduncle and a small plant height/1st fruit length ratio.

Line 33 (400Gy) had a small height, short peduncle and internode, a small plant height/1st fruit length ratio.

Line 55 (500Gy) showed reduction of peduncle length and plant height.

## For KBG535

Line 48 (200Gy): increase of plant height, stem diameter, first fruit length, weight and number of seeds.

Line 61 (500Gy): reduction of plant height, internode length, height of first fruit node and plant height/1st fruit length ratio.

#### For KBG24

Line 34 (400Gy): decrease in height of first fruit node, and increase in first fruit weight and seed number.

L43 (600Gy): decrease in height of first fruit node and plant height/1st fruit length ratio due to a greatest fruit length.

Furthermore, the Ascendant hierarchical classification (AHC) results showed, for UAE22 lines, 3 groups as mentioned in figure 1. The first group contained the control and 2 lines. Then, one of the other two groups contained the preferred lines 32, 33 and 55.

For KbG535, 7 groups applied. The group with the

control is made by only 2 lines, with L08. Then other lines formed the other 6 groups (Figure 2), with 3 groups containing only one line.

Finally, KbG24 lines were arranged within 4 groups. The control formed one of them with lines 04 and 56associated with lines 35, 42, 43 and 53(Figure 3).

For all the three genotypes lines, the lines previously considered interesting were in groups different from the one of the controls. However, groups were not arranged according to irradiation doses. In the same group, many lines originated from different doses occurred.

Significant reduction of plant quantitative traits was recorded for UAE22 and KBG535 lines while irradiation doses increase starting from 400Gy to 1000Gy. The reduced height of most of the mutants was due to reduction of internode length or number of nodes.

Then, significant increase was observed in lower dose (200Gy) mainly for KBG535 line. This statement is similar to Khursheed (2019) findings in Okra where they identified M2 tall mutants at 100Gy and dwarf mutants at 400Gy.

Jadhav *et al.*, (2013) then Reddy and Dhaduk (2014) reported significant differences between the treatments for all the characters they studied in M2 generation of okra. The lower doses of mutagens i.e. 15 kR and 30kR gamma rays and 0.2 and 0.4 per cent Ethyl methane sulfonate (EMS) increased germination rate, plant height, number of fruits per plant, fruit length, number of seeds per fruit and yield per plant. Significant decrease was recorded for yield per plant at 45 kR and 60 kR gamma rays and 0.8% and 1.00% EMS in M2 generation.

Amin *et al.*, (2019) also reported a wider magnitude of variability induced by mutagenic treatment on black cumin concerning some quantitative traits such as plant height, number of fertile branches per plant, number of capsules per plant, number of seeds per capsules and 1000-seeds weight in M2. In their study, plant height increased with lower concentrations of EMS and gamma rays.

Kharkwal *et al.*, (2004) stated that dwarf and semidwarf mutants with reduced plant height belong to the most frequently arising types in mutation experiments. In addition, Yashvir (1975) reported that, in the irradiated okra M2 generation, plant height decreased. Saleem *et al.*, (2014), working on gamma rays induced variations in some cotton genotypes, also reported that, as compared to the control, significant reduction in plant height was observed for all the varieties under the influence of all the gamma rays' doses they've used (10, 15, 20 and 25kR).

The results of this study are similar to those of Rao (1991) on M2 plants, for plant height fruit length, number of seeds per fruit. They got different from the same results with 100 seeds weight which was not significantly different from control in our study. In addition, dwarf lines (25 to 45cm) that they reported were also recorded in our study for UAE22 lines L32 and L33 (400Gy) and all the 4 lines at 800 and 1000Gy, then KBG535 line L61 (500Gy).

Also, the tall lines with long fruits that they identified were observed for KBG535 line 48-200Gy. In addition, Fayad *et al.*, (2020) reported a decrease in fruit length, number of fruits per plant and fruit yield characters in M2 generation okra plants, under irradiation from 10 to 40kR.

Mohite and Gurav (2019) observed that M2 lines of okra didn't show significant difference from the control at 10, 20, 30 and 40kR for number of nodes, length of internodes, number of fruits per plant, number of seeds /fruits and 100 seeds weight. At 50kR, only the number of seeds / fruits got a significant reduction. Finally, Elangovan and Pavadai (2015) obtained results in their study on okra that demonstrated significant differences between the seed yield parameters such as a number of pods per plant, pod length, weight of seeds per plant, and seed yield per plant.

# Int.J.Curr.Microbiol.App.Sci (2023) 12(10): 1-14

| Doses (Gy)    | 0   | 200 | 400 | 500 | 600 | 800 | 1000 |
|---------------|-----|-----|-----|-----|-----|-----|------|
| <b>UAE22</b>  | L45 | L31 | L32 | L55 | L12 | L07 | L13  |
|               |     | L49 | L33 | L60 | L57 | L59 | L24  |
|               |     | L50 | L54 |     |     |     |      |
| <b>KBG535</b> | L40 | L47 | L08 | L18 | L37 |     |      |
|               |     | L48 | L11 | L21 | L58 |     |      |
|               |     | L51 | L20 | L61 |     |     |      |
|               |     |     |     | L62 |     |     |      |
| KBG24         | L46 | L10 | L34 | L04 | L17 |     |      |
|               |     | L15 | L35 | L09 | L23 |     |      |
|               |     | L16 |     | L30 | L43 |     |      |
|               |     | L42 |     | L56 |     |     |      |
|               |     | L52 |     |     |     |     |      |
|               |     | L53 |     |     |     |     |      |

Table.1 List of the three genotypes M2 lines in relation with the irradiation doses

Table.2 Traits studied

| N° | Traits                                       | N° | Traits                                       |
|----|----------------------------------------------|----|----------------------------------------------|
| 1  | Plant height at 55DAS (PHI)                  | 14 | Fruit base diameter at 55DAS (DBI)           |
| 2  | Plant height at maturity (PHM)               | 15 | Fruit middle diameter at 55DAS (DMI)         |
| 3  | Stem diameter at 55DAS (SDI)                 | 16 | Fruit base diameter at maturity (DBM)        |
| 4  | Height first fruit node at 55DAS (HNI)       | 17 | Fruit narrow part diameter at maturity (DNM) |
| 5  | Height first fruit node at maturity (HNM)    | 18 | Fruit middle diameter at maturity (DMM)      |
| 6  | Peduncle length at 55DAS (PLI)               | 19 | Weight of first fruit at maturity (WFF)      |
| 7  | Length of internode at 55DAS (LII)           | 20 | Weight of total fruits per plant (WFP)       |
| 8  | Length of internode at maturity (LIM)        | 21 | Number of seeds per fruit (NSF)              |
| 9  | Number of internodes above first fruit (NIA) | 22 | Number of seeds per plant (NSP)              |
| 10 | Number of fruits per plant (NFP)             | 23 | Weight of seeds per fruit (WSF)              |
| 11 | Number of ridges per fruit (NRF)             | 24 | Weight of seeds per plant (WSP)              |
| 12 | First fruit length at 55DAS (FLI)            | 25 | Weight of hundred seeds (WHS)                |
| 13 | First fruit length at maturity (FLM)         | 26 | Ratio PHM/FLM                                |

#### Int.J.Curr.Microbiol.App.Sci (2023) 12(10): 1-14

| Lines | PHI        | HNI     | SDI    | LII      | PLI     | FLI      | DBI     | DMI   | HNM    |
|-------|------------|---------|--------|----------|---------|----------|---------|-------|--------|
| L45   | 58,64      | 29,66   | 8,99   | 8,501    | 3,50    | 17,50    | 22,97   | 22,78 | 30,02  |
| L31   | 65,02      | 35,99   | 7,64   | 9,982    | 2,77    | 13,66*   | 20,81   | 21,72 | 37,14  |
| L49   | 60,31      | 38,66   | 7,50   | 7,825    | 2,67    | 16,50    | 21,92   | 21,81 | 41,50* |
| L50   | 65,73      | 38,35   | 9,01   | 11,013   | 2,67    | 15,50    | 25,27   | 25,93 | 41,45* |
| L32   | 39,71***   | 26,02   | 9,02   | 6,678    | 2,50*   | 17,17    | 24,82   | 26,20 | 26,59  |
| L33   | 33,06****  | 21,01   | 7,37   | 3,507*** | 2,17*** | 15,50    | 22,37   | 22,44 | 22,86  |
| L54   | 50,03      | 33,01   | 7,52   | 7,838    | 2,17*** | 16,67    | 22,51   | 22,32 | 33,70  |
| L55   | 46,999     | 30,165  | 8,37   | 6,000    | 2,17*** | 16,83    | 21,81   | 21,91 | 30,34  |
| L60   | 48,658     | 29,812  | 8,20   | 6,149    | 2,82    | 14,83    | 20,32   | 21,10 | 30,56  |
| L12   | 60,311     | 32,322  | 9,60   | 9,328    | 3,00    | 16,17    | 22,52   | 22,18 | 32,72  |
| L57   | 50,628     | 28,982  | 8,49   | 6,993    | 3,00    | 15,50    | 22,06   | 21,59 | 29,68  |
| L07   | 49,984     | 30,991  | 7,47   | 5,327    | 2,33**  | 12,17*** | 18,22** | 19,19 | 31,37  |
| L59   | 36,384**** | 25,018  | 7,39   | 5,345    | 2,33**  | 13,83    | 20,07   | 20,56 | 26,89  |
| L13   | 42,551*    | 22,524  | 9,90   | 6,019    | 3,00    | 8,25**** | 19,78   | 19,88 | 29,96  |
| L24   | 30,345**** | 20,336* | 6,37** | 4,169**  | 2,17*** | 13,50*   | 21,91   | 22,30 | 19,53* |
| Pr>F  | 0,000      | 0,000   | 0,002  | 0,000    | 0,001   | 0,000    | 0,000   | 0,003 | 0,000  |
| Sign. | Yes        | Yes     | Yes    | Yes      | Yes     | Yes      | Yes     | Yes   | Yes    |

# **Table.3** Dunnett bilateral genotypes test – Analysis of differences between Control L45 and other lines with95% confidence interval: UAE22

# Table.3 (continued)

| Lines | PHM        | LIM      | NIA   | NFP   | WFF      | FLM     | NSF    | WSF    | DBM       |
|-------|------------|----------|-------|-------|----------|---------|--------|--------|-----------|
| L45   | 61,977     | 8,860    | 7,643 | 2,34  | 5,90     | 17,66   | 49,42  | 3,10   | 18,46     |
| L31   | 68,186     | 10,789   | 4,976 | 2,00  | 4,19*    | 14,49*  | 36,36  | 2,12   | 17,72     |
| L49   | 62,265     | 7,350    | 4,255 | 2,00  | 4,66     | 15,66   | 36,91  | 2,32   | 17,25     |
| L50   | 68,399     | 10,579   | 5,326 | 2,00  | 6,20     | 14,17*  | 65,15  | 3,79   | 20,43     |
| L32   | 41,380**** | 6,985    | 4,970 | 2,00  | 5,20     | 16,67   | 46,26  | 2,29   | 19,99     |
| L33   | 34,669**** | 3,388*** | 4,619 | 2,34  | 4,55     | 15,001  | 52,16  | 2,47   | 18,95     |
| L54   | 51,662     | 7,845    | 4,206 | 2,00  | 5,32     | 16,17   | 45,33  | 2,83   | 18,17     |
| L55   | 46,308***  | 5,628    | 4,584 | 2,34  | 5,28     | 16,50   | 44,99  | 2,78   | 18,02     |
| L60   | 49,575     | 5,989    | 5,361 | 2,35  | 3,77**   | 14,70   | 34,34  | 2,02   | 16,19     |
| L12   | 62,621     | 9,056    | 7,818 | 2,00  | 4,26*    | 15,50   | 43,32  | 1,90*  | 18,49     |
| L57   | 57,943     | 6,492    | 9,599 | 2,34  | 4,07*    | 15,16   | 29,92  | 1,94   | 17,31     |
| L07   | 47,602**   | 5,462    | 4,968 | 2,34  | 2,85**** | 12,99** | 30,99  | 1,66** | 14,01**** |
| L59   | 34,701**** | 6,362    | 4,207 | 2,03  | 2,55**** | 13,67** | 31,93  | 1,33** | 14,30***  |
| L13   | 42,591***  | 6,467    | 5,504 | 2,00  | 3,58**   | 13,00** | 22,44* | 1,15** | 16,81     |
|       |            |          |       |       |          |         |        |        |           |
| Pr>F  | 0,000      | 0,000    | 0,008 | 0,831 | 0,000    | 0,005   | 0,000  | 0,000  | 0,000     |
| Signt | Yes        | Yes      | Yes   | No    | Yes      | Yes     | Yes    | Yes    | Yes       |

| Lines       | DNM      | DMM       | NRF   | WFP     | NSP     | WSP    | WHS   | PHM/FLM |
|-------------|----------|-----------|-------|---------|---------|--------|-------|---------|
| L45         | 16,098   | 17,737    | 5,002 | 9,466   | 82,988  | 4,750  | 6,262 | 3,521   |
| L31         | 16,869   | 17,079    | 5,334 | 6,938   | 36,437  | 2,132  | 5,874 | 4,707*  |
| L49         | 15,960   | 16,658    | 5,001 | 6,915   | 60,700  | 3,431  | 6,146 | 4,007   |
| L50         | 18,021   | 19,519    | 5,001 | 10,491  | 109,710 | 6,159  | 5,886 | 4,843** |
| L32         | 17,146   | 16,929    | 5,002 | 6,356   | 55,020  | 2,805  | 4,887 | 2,486*  |
| L33         | 16,632   | 16,934    | 5,002 | 8,090   | 74,111  | 3,896  | 3,932 | 2,312*  |
| L54         | 16,950   | 17,920    | 5,002 | 7,998   | 68,386  | 4,121  | 6,230 | 3,209   |
| L55         | 15,800   | 16,927    | 5,002 | 7,780   | 67,034  | 3,959  | 6,169 | 2,808   |
| L60         | 14,218   | 16,724    | 5,647 | 7,390   | 71,113  | 3,858  | 6,028 | 3,425   |
| L12         | 15,539   | 16,720    | 5,001 | 8,513   | 85,690  | 3,786  | 4,425 | 4,048   |
| L57         | 15,807   | 17,638    | 5,001 | 8,105   | 65,336  | 3,995  | 6,545 | 3,832   |
| L07         | 12,395** | 14,566*** | 5,669 | 5,372   | 60,720  | 3,047  | 5,378 | 3,677   |
| L59         | 12,711*  | 14,751**  | 5,002 | 3,397** | 46,382  | 1,739* | 4,670 | 2,582   |
| L13         | 14,542   | 17,904    | 5,002 | 7,453   | 68,498  | 2,952  | 5,076 | 3,314   |
| L24         | 15,216   | 17,890    | 5,002 | 4,760*  | 40,707* | 2,138  | 5,704 | 2,011** |
| Pr>F        | 0,000    | 0,000     | 0,639 | 0,003   | 0,001   | 0,004  | 0,330 | 0,000   |
| Significant | Yes      | Yes       | No    | Yes     | Yes     | Yes    | No    | Yes     |

# Table.3 (end)

**Table.4** Dunnett bilateral genotypes test – Analysis of differences between Control L40 and other lines with95% confidence interval: KBG535

| Lines       | PHI       | HNI      | SDI      | LII    | PLI   | FLI    | DBI      | DMI    | HNM      |
|-------------|-----------|----------|----------|--------|-------|--------|----------|--------|----------|
| L40         | 63,017    | 32,449   | 7,876    | 7,679  | 2,674 | 14,327 | 23,525   | 24,625 | 31,615   |
| L47         | 58,042    | 26,966   | 8,668    | 7,660  | 3,499 | 17,033 | 19,239   | 20,560 | 27,046   |
| L48         | 74,599    | 23,561   | 11,216*  | 7,253  | 3,760 | 13,775 | 18,457   | 20,252 | 24,455   |
| L51         | 52,386    | 31,035   | 7,756    | 9,328  | 3,006 | 10,862 | 23,292   | 26,629 | 31,365   |
| L08         | 57,501    | 24,777   | 9,067    | 8,686  | 3,518 | 13,028 | 16,836** | 20,390 | 25,687   |
| L11         | 38,324**  | 19,350** | 7,329    | 6,331  | 2,002 | 6,662* | 22,142   | 25,179 | 19,520** |
| L20         | 51,374    | 22,976*  | 9,132    | 5,157  | 2,333 | 13,518 | 18,261*  | 19,055 | 24,651   |
| L18         | 50,044    | 26,662   | 7,598    | 4,996  | 2,668 | 14,359 | 17,436*  | 20,646 | 26,345   |
| L21         | 45,062*   | 22,449   | 8,386    | 4,832  | 2,340 | 14,350 | 22,079   | 22,978 | 24,982   |
| L61         | 34,942*** | 19,350*  | 9,346    | 3,169* | 2,341 | 18,166 | 25,668   | 24,338 | 24,617   |
| L62         | 44,051    | 22,976*  | 11,877** | 3,500  | 2,259 | 16,010 | 26,564   | 23,648 | 22,937   |
| L37         | 60,463    | 25,843   | 8,395    | 6,500  | 3,601 | 13,144 | 16,689** | 19,447 | 26,194   |
| L58         | 49,745    | 23,693*  | 8,865    | 5,993  | 2,673 | 14,028 | 20,372   | 22,304 | 23,967   |
| Pr>F        | 0,000     | 0,009    | 0,008    | 0,002  | 0,001 | 0,011  | 0,000    | 0,023  | 0,022    |
| Significant | Yes       | Yes      | Yes      | Yes    | Yes   | Yes    | Yes      | Yes    | Yes      |

| Lines       | PHM     | LIM     | NIA        | NFP   | WFF   | FLM     | NSF    | WSF   | DBM     |
|-------------|---------|---------|------------|-------|-------|---------|--------|-------|---------|
| L40         | 60,422  | 8,513   | 5,404      | 2,329 | 5,055 | 12,971  | 49,647 | 2,807 | 18,706  |
| L47         | 59,710  | 7,656   | 7,674      | 2,002 | 4,550 | 15,168  | 70,294 | 2,952 | 14,051* |
| L48         | 86,216* | 8,245   | 11,710**** | 2,999 | 8,045 | 18,774* | 84,398 | 3,917 | 17,033  |
| L51         | 52,493  | 8,331   | 4,927      | 2,001 | 5,186 | 10,789  | 73,941 | 3,443 | 16,732  |
| L08         | 58,919  | 8,997   | 5,410      | 2,328 | 3,966 | 15,515  | 43,518 | 2,296 | 13,646* |
| L11         | 41,357  | 6,670   | 6,991      | 2,000 | 4,086 | 8,706   | 44,934 | 2,088 | 18,061  |
| L20         | 60,044  | 6,658   | 8,012      | 2,002 | 2,887 | 13,244  | 32,025 | 1,250 | 13,768* |
| L18         | 52,743  | 4,992   | 8,038      | 2,334 | 3,134 | 14,145  | 31,631 | 1,660 | 13,846* |
| L21         | 47,128  | 4,657*  | 6,707      | 2,666 | 4,444 | 14,632  | 51,924 | 2,325 | 16,722  |
| L61         | 36,975* | 3,827** | 5,041      | 2,326 | 6,220 | 17,162  | 49,007 | 2,693 | 21,672  |
| L62         | 46,135  | 3,741*  | 6,042      | 3,499 | 4,468 | 15,730  | 16,355 | 1,126 | 20,580  |
| L37         | 71,485  | 6,721   | 9,270*     | 2,680 | 3,182 | 14,071  | 28,647 | 1,279 | 13,954* |
| L58         | 53,489  | 6,153   | 7,729      | 2,668 | 4,037 | 13,620  | 40,699 | 2,226 | 14,327* |
| Pr> F       | 0,000   | 0,002   | 0,000      | 0,336 | 0,019 | 0,000   | 0,001  | 0,032 | 0,000   |
| Significant | Yes     | Yes     | Yes        | No    | Yes   | Yes     | Yes    | Yes   | Yes     |

# Table.4 (continued)

# Table.4 (end)

| Lines       | DNM       | DMM     | NRF    | WFP    | NSP     | WSP   | WHS   | PHM/FLM  |
|-------------|-----------|---------|--------|--------|---------|-------|-------|----------|
| L40         | 17,633    | 19,269  | 6,008  | 9,439  | 102,642 | 5,047 | 5,715 | 4,743    |
| L47         | 11,238**  | 16,356  | 8,368* | 10,421 | 127,086 | 5,666 | 4,0   | 3,946    |
| L48         | 12,541*   | 18,556  | 7,535  | 17,381 | 203,916 | 8,340 | 4,689 | 4,618    |
| L51         | 17,874    | 19,099  | 7,019  | 7,966  | 117,907 | 4,998 | 4,642 | 4,859    |
| L08         | 11,176*   | 15,850  | 5,652  | 8,723  | 104,994 | 4,974 | 5,300 | 3,838    |
| L11         | 18,112    | 20,330  | 5,998  | 5,405  | 55,721  | 2,548 | 4,710 | 4,763    |
| L20         | 13,008*   | 15,092* | 5,320  | 8,309  | 93,334  | 3,490 | 3,530 | 4,535    |
| L18         | 10,099*** | 15,221* | 7,015  | 7,332  | 74,554  | 4,099 | 5,316 | 3,738    |
| L21         | 15,229    | 15,881  | 4,993  | 8,975  | 102,469 | 4,419 | 4,378 | 3,198*   |
| L61         | 18,124    | 17,729  | 4,998  | 11,536 | 92,603  | 4,902 | 5,498 | 2,139*** |
| L62         | 16,240    | 17,637  | 4,997  | 18,210 | 99,895  | 6,630 | 6,610 | 2,921*   |
| L37         | 11,456**  | 15,711  | 6,660  | 7,477  | 57,407  | 2,667 | 4,506 | 5,108    |
| L58         | 12,074**  | 16,559  | 5,670  | 8,279  | 91,799  | 4,540 | 5,417 | 4,018    |
| Pr>F        | 0,000     | 0,004   | 0,000  | 0,052  | 0,047   | 0,357 | 0,275 | 0,000    |
| Significant | Yes       | Yes     | Yes    | No     | Yes     | No    | No    | Yes      |

#### Int.J.Curr.Microbiol.App.Sci (2023) 12(10): 1-14

| Lines       | PHI    | HNI       | SDI    | LII   | PLI   | FLI    | DBI    | DMI    | HNM      |
|-------------|--------|-----------|--------|-------|-------|--------|--------|--------|----------|
| L46         | 58,320 | 36,717    | 8,292  | 6,315 | 2,344 | 13,975 | 20,868 | 22,199 | 35,362   |
| L10         | 70,467 | 31,636    | 10,455 | 6,147 | 2,344 | 15,659 | 22,947 | 24,370 | 32,017   |
| L15         | 56,981 | 25,280*   | 8,463  | 7,164 | 2,679 | 15,172 | 18,295 | 18,703 | 26,341   |
| L16         | 56,997 | 31,322    | 8,542  | 8,471 | 1,996 | 11,809 | 17,101 | 17,810 | 33,983   |
| L42         | 47,550 | 24,954**  | 7,800  | 4,467 | 1,498 | 13,661 | 20,525 | 22,385 | 25,673   |
| L52         | 48,904 | 27,635    | 7,521  | 5,987 | 1,666 | 13,318 | 21,662 | 20,837 | 29,335   |
| L53         | 52,951 | 26,280*   | 8,206  | 5,309 | 1,329 | 14,326 | 20,836 | 22,033 | 27,331   |
| L34         | 54,955 | 23,959**  | 8,638  | 6,491 | 2,258 | 10,963 | 20,208 | 19,872 | 24,032   |
| L35         | 47,218 | 26,984*   | 6,898  | 6,998 | 1,497 | 11,639 | 19,703 | 19,946 | 27,678   |
| L04         | 57,325 | 30,307    | 8,363  | 5,813 | 2,173 | 14,997 | 18,866 | 20,223 | 30,667   |
| L09         | 48,239 | 30,020    | 7,801  | 4,982 | 1,494 | 10,959 | 22,092 | 21,707 | 32,343   |
| L30         | 69,101 | 31,642    | 10,141 | 5,979 | 1,670 | 13,123 | 19,987 | 19,841 | 33,692   |
| L56         | 68,793 | 30,661    | 10,488 | 8,851 | 2,510 | 16,517 | 20,169 | 21,063 | 32,668   |
| L17         | 52,113 | 27,560    | 8,322  | 4,956 | 2,446 | 11,878 | 15,932 | 17,127 | 28,878   |
| L23         | 47,885 | 22,255*** | 8,965  | 5,821 | 1,497 | 9,947  | 20,654 | 19,060 | 22,672** |
| L43         | 45,894 | 23,405**  | 10,043 | 5,735 | 2,761 | 15,505 | 25,342 | 24,141 | 23,497*  |
| Pr> F       | 0,001  | 0,007     | 0,029  | 0,092 | 0,001 | 0,165  | 0,012  | 0,048  | 0,015    |
| Significant | Yes    | Yes       | Yes    | No    | Yes   | No     | Yes    | Yes    | Yes      |

# **Table.5** Dunnett bilateral genotypes test – Analysis of differences between Control L46 and other lines with95% confidence interval: KBG24

# Table.5 (continued)

| Lines       | PHM    | LIM   | NIA   | NFP   | WFF    | FLM    | NSF     | WSF   | DBM    |
|-------------|--------|-------|-------|-------|--------|--------|---------|-------|--------|
| L46         | 58,938 | 6,159 | 5,330 | 2,001 | 4,173  | 12,829 | 45,657  | 2,517 | 16,480 |
| L10         | 64,367 | 6,326 | 6,373 | 3,003 | 4,673  | 14,150 | 51,410  | 2,582 | 15,696 |
| L15         | 58,981 | 7,523 | 6,369 | 2,334 | 3,815  | 15,998 | 38,666  | 2,106 | 15,721 |
| L16         | 60,643 | 8,404 | 5,602 | 2,007 | 3,680  | 15,926 | 43,234  | 2,060 | 14,445 |
| L42         | 47,841 | 4,966 | 5,667 | 2,334 | 3,777  | 13,496 | 45,123  | 2,176 | 16,478 |
| L52         | 51,175 | 6,162 | 4,967 | 2,001 | 3,396  | 13,099 | 36,079  | 1,776 | 15,567 |
| L53         | 51,493 | 4,826 | 6,023 | 2,001 | 4,221  | 13,663 | 43,134  | 2,287 | 17,262 |
| L34         | 56,236 | 7,005 | 7,065 | 1,996 | 7,585* | 15,751 | 76,588* | 4,523 | 21,590 |
| L35         | 47,592 | 5,988 | 5,314 | 1,999 | 4,424  | 13,826 | 49,524  | 2,606 | 16,490 |
| L04         | 57,679 | 6,338 | 5,675 | 2,004 | 2,915  | 15,168 | 40,386  | 1,725 | 13,227 |
| L09         | 54,430 | 6,673 | 5,306 | 2,331 | 3,181  | 10,344 | 31,186  | 1,625 | 18,208 |
| L30         | 67,157 | 6,662 | 6,724 | 3,002 | 3,880  | 13,486 | 45,797  | 2,205 | 17,971 |
| L56         | 70,373 | 9,061 | 6,368 | 2,335 | 4,370  | 16,165 | 37,720  | 2,383 | 16,296 |
| L17         | 53,374 | 5,445 | 7,757 | 2,320 | 2,698  | 13,392 | 16,598* | 0,826 | 12,999 |
| L23         | 53,790 | 6,264 | 6,859 | 2,665 | 2,474  | 10,829 | 28,341  | 0,976 | 17,199 |
| L43         | 48,572 | 5,733 | 6,010 | 2,500 | 5,177  | 17,989 | 36,353  | 2,092 | 20,670 |
| Pr>F        | 0,009  | 0,151 | 0,267 | 0,440 | 0,023  | 0,016  | 0,001   | 0,004 | 0,007  |
| Significant | Yes    | No    | No    | No    | Yes    | Yes    | Yes     | Yes   | Yes    |

| Lines       | DNM    | DMM    | NRF    | WFP    | NSP     | WSP   | WHS   | PHM/FLM |
|-------------|--------|--------|--------|--------|---------|-------|-------|---------|
| L46         | 13,928 | 15,940 | 4,995  | 7,720  | 86,431  | 4,622 | 5,604 | 4,706   |
| L10         | 14,301 | 15,683 | 4,997  | 10,711 | 123,850 | 5,397 | 4,971 | 4,579   |
| L15         | 11,844 | 14,497 | 4,996  | 7,078  | 74,678  | 3,939 | 5,470 | 3,688   |
| L16         | 11,510 | 13,764 | 4,996  | 5,654  | 65,351  | 3,045 | 4,708 | 2,689*  |
| L42         | 13,044 | 15,898 | 6,345* | 6,566  | 83,902  | 3,615 | 4,800 | 3,556   |
| L52         | 14,367 | 15,324 | 4,996  | 6,134  | 71,902  | 3,171 | 4,922 | 3,910   |
| L53         | 13,993 | 15,180 | 6,008  | 6,991  | 77,342  | 3,656 | 5,158 | 3,828   |
| L34         | 18,275 | 19,034 | 4,995  | 13,683 | 143,496 | 7,688 | 5,901 | 3,536   |
| L35         | 14,144 | 15,607 | 5,333  | 6,460  | 81,569  | 3,640 | 5,327 | 3,414   |
| L04         | 11,677 | 14,085 | 5,671  | 5,749  | 84,289  | 3,410 | 4,381 | 3,841   |
| L09         | 15,356 | 15,434 | 4,996  | 8,315  | 66,444  | 3,436 | 5,143 | 5,269   |
| L30         | 15,241 | 16,028 | 5,037  | 10,890 | 127,435 | 5,228 | 4,752 | 5,136   |
| L56         | 13,776 | 15,244 | 4,996  | 9,835  | 90,041  | 5,428 | 6,291 | 4,378   |
| L17         | 11,124 | 13,457 | 5,046  | 6,044  | 59,609  | 2,843 | 4,759 | 4,009   |
| L23         | 14,445 | 15,575 | 4,997  | 6,982  | 69,838  | 3,103 | 3,437 | 4,945   |
| L43         | 17,679 | 17,678 | 4,997  | 11,997 | 96,707  | 4,501 | 4,967 | 2,667*  |
| Pr> F       | 0,006  | 0,015  | 0,010  | 0,066  | 0,016   | 0,098 | 0,224 | 0,005   |
| Significant | Yes    | Yes    | Yes    | No     | Yes     | No    | No    | Yes     |

# Table.5 (end)

\* Significant, \*\* highly significant, \*\*\* very highly significant, \*\*\*\*...

# Fig.1 Dendrogram of UAE 22 genotype lines











Stem branching observed in M1 plants didn't appear in M2 lines. One can state that this trait is morphological change due to radiation without heritable pattern or is a result of polygenic interaction.

The importance of identification of our seven (07) mutant lines on the basis of their traits comes as follow. Small plant height prevents from lodging. As stated by Jency *et al.*, (2020), lodging is usually referred to as a condition in which the stem of a crop

bends at or near the surface of the ground, which could lead to the collapse of the canopy. Sruba and Amitava (2017) stated that, to start a breeding program of any crop wind should be taken into consideration due to possibility of lodging. Generally, tall plants bearing high capsules are prone to lodging, whereas, dwarf plants are more suitable in these conditions. When small height is associated with no difference of yield traits from the control, the small plants should be preferred because they resist to some abiotic factors, consume less nutrients and produce good yield. This justifies the preference for small plant height/first fruit length ratio. According to Aamir *et al.*, (2019), the prime objective of any mutation breeding programme(s) is to develop varieties that would be high yielding coupled with short stature, early maturing and disease resistant.

Also, small peduncle strengthens the fixation of fruit at the node and prevent it from falling or anatomic damaging. At the reverse side, plant height increase needs to be associated with increased stem diameter and fruit traits in order to be selected compared to control. Also, small height of first fruit node may mean precocity and opportunity to produce more fruits since the fruits are harvested fresh.

Bhatia and Swanminathan (1962) in Yashvir (1975), in their work on bread wheat, emphasized that if in a particular character, no selection in the past had been exercised, the mean value would go down as a result of mutagenic treatment.

This can explain the mean significant reduction of some of the traits studied in this work, particularly for UAE22. Nevertheless, the opposite effect was recorded in KBG535 lines with some increase in means.

Irradiation effects varied according to the doses and also according to genotypes. Further, within the same dose, irradiation produced mutants with various patterns. Similarly, Gupta *et al.*, (2018), while working on mutagenesis on okra, stated that at M2 generation, all the mutagenic treatments were not equally effective in generating variability.

In conclusion, M2 mutant lines from three okra genotypes previously irradiated with gamma rays showed a significant variation for all the 26 quantitative traits assessed. The variability created was higher in UAE22 lines, then in KBG535 lines and finally KBG24 lines. No stem branching was reproduced in M2 lines like in M1. Interesting lines were identified with suitable traits for climatic adaptation and yield attributing traits. Since mutations have a high probability not to appear in M1 generation, mainly due to their recessive nature, the mutant's patterns identified are produced by mutations of genes.

The few M2 interesting mutants reported show that mutation breeding on Okra is possible in Burkina Faso. The range of gamma rays' doses which produced these mutants should be used to produce more M1 plants in order to allow wider expression of genes. Thus, in M2 some more mutants can be selected due to the aleatory nature of mutation occurrence.

Also, M3 generations need to be grown in field conditions in order to assess the plants heritable traits and ability to express their genotypes in normal growing conditions.

# References

- Aamir R, Rafiul A. L., Roshan J., RuhulA., Shahnawaz K., Mohd. R. W., Nahida T. N., Samiullah K., 2019. Mutation breeding for crop improvement in Introduction to challenges and strategies to improve crop productivity in changing environment Mohammad Wahid Ansari, Savindra Kumar Babeeta C. Kaula, Ratnum K. Wattal-Enriched publications pvt.Ltd
- Amin R., Wani M. R., Raina A., Khursheed S. and Khan S., 2019. Induced Morphological and Chromosomal Diversity in the Mutagenized Population of Black Cumin (*Nigella sativa* L.) Using Single and Combination Treatments of Gamma Rays and Ethyl Methane Sulfonate, Jordan Journal of Biological Sciences, *Volume 12, Number 1,March 2019 ISSN 1995-6673 Pages 23 – 30.*
- Ashwini V. M. and Rajaram V. G., 2019. Induced mutation using gamma rays in okra (*Abelmoschus esculentus* (L.) Moench), Journal of Applied Horticulture, 21(3): 205-208.

https://doi.org/10.37855/jah.2019.v21i03.35

- Bhatia, C. R. & M. S. Swaminathan, 1962. Induced polygenic variability in bread wheat and its bearing on selection procedures. Z. PflanzenZücht. 48:317–326.
- Elangovan R. and Pavadai P., 2015. Effect of gamma rays on germination, morphological and yield characters of bhendi (*Abelmoschus esculentus* [L.] Moench), Horticultural Biotechnology Research 2015, 1: 35-38, <u>http://scienceflora.org/journals/index.php/hbr</u> <u>/</u>,

https://doi.org/10.19071/jhcbt.2015.v1.2916.

- Fayad A. M., Masry A. I. and. Fayed A. A. M, 2020. Improving yield and seeds in okra crop through induced useful mutations, J. Product. & Dev., 25(4),471- 480 (2020). https://doi.org/10.21608/jpd.2020.151423
- Gupta N., Sood S., Sood V K, 2018. Induction and characterisation of agronomically useful mutants in okra [*Abelmoschus esculentus* (L.) Moench], Agricultural Research Journal, Volume: 55, Issue 1, First page: (47) Last page: (51), Print ISSN: 2395-1435. Online ISSN: 2395-146X. Article <u>https://doi.org/10.5958/2395-</u> 146X.2018.00007.8.
- IAEA mutants varieties database 2022 (MVD iaea.org).
- Jadhav P. A., Kalpande H. V., ArbadS. K. and Mali A. R., 2013. Induced mutagenesis in okra [*Abelmoschus esculentus* (L.) Moench] bygamma rays and ethyl methane sulphonate, Vegetable Science (2013) 40 (2) : 223-224.
- Jency J. P., Rajasekaran R., Singh R. K., Muthurajan R., Prabhakaran J., Mehanathan M., Prasad M. and Ganesan J., 2020. Induced Mutagenesis Enhances Lodging Resistance and Photosynthetic Efficiency of Kodo millet (*Paspalum scrobiculatum*); Agronomy 2020, 10, 227; https://doi.org/10.3390/agronomy10020227

www.mdpi.com/journal/agronomy

Kalpande H. V., Borgaonkar S. B. and Chavan S.K., 2020. Mutagenic Induction of Yield Contributing Traits in of Soybean (*Glycine*) *max* (L.) Merrill) with Gamma Irradiation and EMS, International Journal of Current Microbiology and Applied Sciences 9(6): 3057-3063;

https://doi.org/10.20546/ijcmas.2020.906.36 7

Kharkwall M. C., Pandey R. N.- and Pawar S. E., 2004. Mutation Breeding for Crop Improvement, Plant Breeding - Mendelian to Molecular Approaches, H. K. Jain and M. C. Kharkwal (eds.); Narosa Publishing House. New Delhi. India. <a href="https://doi.org/10.1007/978-94-007-1040-">https://doi.org/10.1007/978-94-007-1040-</a>

5\_26

Khursheed S., Raina A., Parveen K., Khan S., 2019: Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis Journal of the Saudi Society of Agricultural Sciences 18; 113–119.

https://doi.org/10.1016/J.JSSAS.2017.03.001

- Lee, Y. I., Lee, I. S. and Lim, Y. P. 2002. Variation in seed potato regenerates from gamma rays irradiated embryogenic callus. J. Plant Biotech.4: 163-170. (àrechercher net)
- Mohite A. V. and Gurav R. V. 2019. Nutraceutical and antioxidant evaluation of Abelmoschus taxa, International Journal of Vegetable Science, <u>https://doi.org/10.1080/19315260.2019.1597</u> 801
- Rao L. J., 1991. Induced mutations in three varieties recovered in M2 and subsequent generations of okra (*Abelrnoschus esculentus* (L.) Moench), Agricultural Research Institute, A.P. Agricultural University, Rajendranagar, Hyderabad 500 030, India. <u>https://doi.org/10.1007/978-94-011-3176-6\_15</u>
- Reddy P S and Dhaduk L. K., 2014. Induction of genetic variability in okra [Abelmoschus esculentus (L.) Moench] by Gamma and EMS. Electronic Journal of Plant Breeding, 5(3): 588-593 (Sep 2014) ISSN 0975-928XOriginal Research Article

https://doi.org/10.20546/ijcmas.2020.906.36 7

- Saleem K., Muhammad I. K., Asim M., Farhadullah K., Rahmat A. K., 2014. Gamma rays induced variations in some cotton (*Gossypium hirsutum* L.) genotypes and their evaluation in the environment of Bannu. International Journal of Advanced Research (2014), Volume 2, Issue 10, 512-518, ISSN 2320-5407.
- Sharma A. K. and Sharma R., 2014. crop improvement and mutation breeding Scientific Publishers (India) 5 A, New Pali Road, P.O. Box 91 Jodhpur 342 001 (India) E-mail: info@scientificpub.com Website: www.scientificpub.com
- Sruba S. and Amitava P., 2017. Gamma Ray Induced Macro Mutants in Sesame (Sesamum indicum L.), International Journal of Current Microbiology and Applied Sciences, ISSN: 2319-7706 Volume 6 Number 10 (2017) pp. 2429-2437, Journal homepage: <u>http://www.ijcmas.com. https://doi.org/10.20546/ijcmas.2017.610.28</u> 7
- Suprasanna P., Mirajkar S. J., and Bhagwat S. G., 2015. Induced Mutations and Crop Improvement. B. Bahadur et al., (eds.), Plant Biology and Biotechnology: Volume I: Plant Diversity, 593, Organization, Function and Improvement, <u>https://doi.org/10.1007/978-</u> 81-322-2286-6 23, © Springer India 2015.
- Surendran S., and Udayan P. S., 2017. Gamma Rays Induced Mutations on Morphological and Yield Attributing Characters in M2 Generation of Okra [*Abelmoschus esculentus* (L.) Moench]. International Journal of Current Microbiology and Applied Sciences

ISSN: 2319-7706 Volume 6 Number10 pp. 3623-3628 Journal homepage: http://www.ijcmas.com https://doi.org/10.20546/ijcmas.2017.610.42 7

- Tindall H. D., 1983. Vegetables in the Tropics, Macmillan Education Ltd, Houndmills, Basingstoke, Hampshire 12G212XS and London, 347–378. In Effect of gamma irradiation on OKRA (*Abelmoschus esculentus* L.), Kiran Amir, Saddam Hussain, Muhammad Shuaib, Firasat Hussain, Zara Urooj,Wisal Muhammad Khan, Umar Zeb, Kashif Ali, Muhammad Aurang Zeb, Fida Hussain; Acta EcologicaSinica
- World data atlas, 2020. <u>https://knoema.com/data/agriculture-indicators-production+okra</u>.
- Yakoro A., Ouédraogo M. H., Tarpaga W. V., Nanéma K. R., Traoré K., Sawadogo M., 2022. Effect of gamma rays on some qualitative traits of three genotypes of Okra (*Abelmoschus esculentus* (L.) Moench) in Burkina Faso; Journal of Applied Biosciences, vol 180: 18811– 18820ISSN 1997-5902
- Yakoro A., Ouédraogo M. H., Tarpaga W. V., Nanéma K. R., Traoré K., Sawadogo M., 2023. Assessment of Gamma Rays effect on Morphoagronomical Quantitative Traits of Three Genotypes of Okra (*Abelmoschus esculentus* (L.) Moench) In Burkina Faso - J. *BioSci. Biotechnol.* 2023, 12(1): 51 - 58
- Yashvir, 1975. Induced quantitative mutations in okra (*Abelmoschus esculentus* Moench) I. plant height mutations. Proc. Indian Acad. Sci., Vol 81 B; No.4, 1975, pp. 181-185.

#### How to cite this article:

Alphonse Yakoro, Mahamadi H. Ouédraogo, Windpouiré V. Tarpaga, Kiswendsida R. Nanema, Karidiatou Traoré and Mahamadou Sawadogo. 2023. Assessment of Variability Induced by Gamma Rays in M2 Generation Mutants of three Genotypes of Okra (*Abelmoschus esculentus* (L.) Moench) in Burkina Faso. *Int.J.Curr.Microbiol.App.Sci.* 12(10): 1-14. **doi:** <u>https://doi.org/10.20546/ijcmas.2023.1210.001</u>